On using exterior penalty approaches for solving linear programming problems
نویسندگان
چکیده
In this research effort, we study three exterior penalty function approaches for solving linear programming problems. These methods are an active set l 2 penalty approach (ASL2), an inequality-equality based l 2 penalty approach (IEL2), and an augmented Lagrangian approach (ALAG). Particular effective variants are presented for each method, along with comments and experience on alternative algorithmic strategies that were empirically investigated. Our motivation is to examine the relative performance of these different approaches based on the basic l 2 penalty function in order to provide insights into the viability of these methods for solving linear programs. To test the performance of these algorithms, a set of randomly generated problems as well as a set of NETLIB test problems from the public domain are used. By way of providing a benchmark for comparisons, we also solve the test problems using CPLEX 6.0, an advanced simplex implementation. While a particular variant (ALAG2) of ALAG performed the best for randomly generated test problems, ASL2 performed the best for the NETLIB test problems. Moreover, for test problems having only equality constraints, IEL2, and ASL2 (which is a finer-tuned version of IEL2 in this case) were comparable and yielded a second-best performance in comparison with ALAG2. Furthermore, a set of problems with relatively higher density parameter values, as well as a set of low-density problems were used to determine the effect of density on the relative performances of these methods. This experiment revealed that for linear programs with a high density parameter, ASL2 is the best alternative among the tested algorithms; whereas, for low-density problems ALAG2 is the fastest method. Moreover, although our implementation was rudimentary in comparison with CPLEX, all of the tested methods attained a final solution faster than CPLEX for the set of large-scale low-density problems, sometimes as fast as requiring only 16-23% of the effort consumed by CPLEX. Average rank tests based on the computational results obtained are performed using two different statistics, that assess the speed of convergence and the quality or accuracy of the solution, in order to determine the relative effectiveness of the algorithms and to validate our conclusions. Overall, the results provide insights into selecting algorithmic strategies based on problem structure and indicate that while this class of methods is viable for computing near optimal solutions, more research is needed to design robust and competitive exterior point methods for solving linear programming problems. However, the use …
منابع مشابه
Integrating Goal Programming, Taylor Series, Kuhn-Tucker Conditions, and Penalty Function Approaches to Solve Linear Fractional Bi-level Programming Problems
In this paper, we integrate goal programming (GP), Taylor Series, Kuhn-Tucker conditions and Penalty Function approaches to solve linear fractional bi-level programming (LFBLP)problems. As we know, the Taylor Series is having the property of transforming fractional functions to a polynomial. In the present article by Taylor Series we obtain polynomial objective functions which are equivalent...
متن کاملPresentation and Solving Non-Linear Quad-Level Programming Problem Utilizing a Heuristic Approach Based on Taylor Theorem
The multi-level programming problems are attractive for many researchers because of their application in several areas such as economic, traffic, finance, management, transportation, information technology, engineering and so on. It has been proven that even the general bi-level programming problem is an NP-hard problem, so the multi-level problems are practical and complicated problems therefo...
متن کاملA goal programming approach for fuzzy flexible linear programming problems
We are concerned with solving Fuzzy Flexible Linear Programming (FFLP) problems. Even though, this model is very practical and is useful for many applications, but there are only a few methods for its situation. In most approaches proposed in the literature, the solution process needs at least, two phases where each phase needs to solve a linear programming problem. Here, we propose a method t...
متن کاملA new solving approach for fuzzy multi-objective programming problem in uncertainty conditions by using semi-infinite linear programing
In practice, there are many problems which decision parameters are fuzzy numbers, and some kind of this problems are formulated as either possibilitic programming or multi-objective programming methods. In this paper, we consider a multi-objective programming problem with fuzzy data in constraints and introduce a new approach for solving these problems base on a combination of the multi-objecti...
متن کاملDefuzzification Method for Solving Fuzzy Linear Programming Problems
Several authors have proposed different methods to find the solution of fully fuzzy linear programming (FFLP) problems. But all the existing methods are based on the assumption that all the fuzzy coefficients and the fuzzy variables are non-negative fuzzy numbers. in this paper a new method is proposed to solve an FFLP problems with arbitrary fuzzy coefficients and arbitrary fuzzy variables, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & OR
دوره 28 شماره
صفحات -
تاریخ انتشار 2001